Twitter Facebook Google Plus LinkedIn RSS Feed Email

Nuclear Medicine Physics: A Handbook for Teachers and Students

Friday, May 15, 2015 | 0 comments


The technologies used in nuclear medicine for diagnostic imaging have evolved over the last century, starting with Röntgen's discovery of X rays and Becquerel's discovery of natural radioactivity. Each decade has brought innovation in the form of new equipment, techniques, radiopharmaceuticals, advances in radionuclide production and, ultimately, better patient care. All such technologies have been developed and can only be practised safely with a clear understanding of the behaviour and principles of radiation sources and radiation detection. These central concepts of basic radiation physics and nuclear physics are described in this chapter and should provide the requisite knowledge for a more in depth understanding of the modern nuclear medicine technology discussed in subsequent chapters.
Contents
CHAPTER 1. BASIC PHYSICS FOR NUCLEAR MEDICINE . 1
1.1. INTRODUCTION 1
1.1.1. Fundamental physical constants . 1
1.1.2. Physical quantities and units 2
1.1.3. Classification of radiation 4
1.1.4. Classification of ionizing radiation . 4
1.1.5. Classification of indirectly ionizing photon radiation . 5
1.1.6. Characteristic X rays 5
1.1.7. Bremsstrahlung 5
1.1.8. Gamma rays . 6
1.1.9. Annihilation quanta 6
1.1.10. Radiation quantities and units . 7
1.2. BASIC DEFINITIONS FOR ATOMIC STRUCTURE 8
1.2.1. Rutherford model of the atom . 10
1.2.2. Bohr model of the hydrogen atom 10
1.3. BASIC DEFINITIONS FOR NUCLEAR STRUCTURE 10
1.3.1. Nuclear radius . 12
1.3.2. Nuclear binding energy 12
1.3.3. Nuclear fusion and fission 13
1.3.4. Two-particle collisions and nuclear reactions . 14
1.4. RADIOACTIVITY 16
1.4.1. Decay of radioactive parent into a stable or unstable daughter . 17
1.4.2. Radioactive series decay 19
1.4.3. Equilibrium in parent–daughter activities 21
1.4.4. Production of radionuclides (nuclear activation) 22
1.4.5. Modes of radioactive decay 23
1.4.6. Alpha decay 25
1.4.7. Beta minus decay 26
1.4.8. Beta plus decay 26
1.4.9. Electron capture . 27
1.4.10. Gamma decay and internal conversion . 27
1.4.11. Characteristic (fluorescence) X rays and Auger electrons 28
1.5. ELECTRON INTERACTIONS WITH MATTER 29
1.5.1. Electron–orbital interactions 29
1.5.2. Electron–nucleus interactions . 29
1.6. PHOTON INTERACTIONS WITH MATTER 30
1.6.1. Exponential absorption of photon beam in absorber 30
1.6.2. Characteristic absorber thicknesses 31
1.6.3. Attenuation coefficients . 34
1.6.4. Photon interactions on the microscopic scale . 35
1.6.5. Photoelectric effect . 38
1.6.6. Rayleigh (coherent) scattering . 39
1.6.7. Compton effect (incoherent scattering) 39
1.6.8. Pair production 44
1.6.9. Relative predominance of individual effects . 46
1.6.10. Macroscopic attenuation coefficients . 47
1.6.11. Effects following photon interactions with absorber and summary of photon interactions . 48
CHAPTER 2. BASIC RADIOBIOLOGY . 49
2.1. INTRODUCTION 49
2.2. RADIATION EFFECTS AND TIMESCALES 49
2.3. BIOLOGICAL PROPERTIES OF IONIZING RADIATION 51
2.3.1. Types of ionizing radiation . 51
2.4. MOLECULAR EFFECTS OF RADIATION AND THEIR MODIFIERS 53
2.4.1. Role of oxygen 54
2.4.2. Bystander effects 54
2.5. DNA DAMAGE AND REPAIR 55
2.5.1. DNA damage 55
2.5.2. DNA repair . 55
2.6. CELLULAR EFFECTS OF RADIATION . 56
2.6.1. Concept of cell death 56
2.6.2. Cell survival curves 56
2.6.3. Dose deposition characteristics: linear energy transfer 57
2.6.4. Determination of relative biological effectiveness . 58
2.6.5. The dose rate effect and the concept of repeat treatments 62
2.6.6. The basic linear–quadratic model 63
2.6.7. Modification to the linear–quadratic model for radionuclide therapies . 64
2.6.8. Quantitative intercomparison of different treatment types . 64
2.6.9. Cellular recovery processes 65
2.6.10. Consequence of radionuclide heterogeneity 66
2.7. GROSS RADIATION EFFECTS ON TUMOURS AND TISSUES/ORGANS . 66
2.7.1. Classification of radiation damage (early versus late) 66
2.7.2. Determinants of tumour response 67
2.7.3. The concept of therapeutic index in radiation therapy and radionuclide therapy 68
2.7.4. Long term concerns: stochastic and deterministic effects . 68
2.8. SPECIAL RADIOBIOLOGICAL CONSIDERATIONS IN TARGETED RADIONUCLIDE THERAPY 69
2.8.1. Radionuclide targeting 69
2.8.2. Whole body irradiation 69
2.8.3. Critical normal tissues for radiation and radionuclide therapies . 70
2.8.4. Imaging the radiobiology of tumours . 71
2.8.5. Choice of radionuclide to maximize therapeutic index 71
CHAPTER 3. RADIATION PROTECTION . 73
3.1. INTRODUCTION 73
3.2. BASIC PRINCIPLES OF RADIATION PROTECTION 74
3.2.1. The International Commission on Radiological Protection system of radiological protection 74
3.2.2. Safety standards 76
3.2.3. Radiation protection quantities and units 77
3.3. IMPLEMENTATION OF RADIATION PROTECTION IN A NUCLEAR MEDICINE FACILI TY 81
3.3.1. General aspects 81
3.3.2. Responsibilities 82
3.3.3. Radiation protection programme . 84
3.3.4. Radiation protection committee . 84
3.3.5. Education and training . 84
3.4. FACILI TY DESIGN . 85
3.4.1. Location and general layout 85
3.4.2. General building requirements 85
3.4.3. Source security and storage 86
3.4.4. Structural shielding . 87
3.4.5. Classification of workplaces . 87
3.4.6. Workplace monitoring 88
3.4.7. Radioactive waste 88
3.5. OCCUPATIONAL EXPOSURE . 89
3.5.1. Sources of exposure . 90
3.5.2. Justification, optimization and dose limitation 91
3.5.3. Conditions for pregnant workers and young persons . 91
3.5.4. Protective clothing 92
3.5.5. Safe working procedures . 92
3.5.6. Personal monitoring 94
3.5.7. Monitoring of the workplace 95
3.5.8. Health surveillance . 95
3.5.9. Local rules and supervision . 96
3.6. PUBLIC EXPOSURE . 97
3.6.1. Justification, optimization and dose limitation 97
3.6.2. Design considerations . 97
3.6.3. Exposure from patients 98
3.6.4. Transport of sources 98
3.7. MEDICAL EXPOSURE . 99
3.7.1. Justification of medical exposure 99
3.7.2. Optimization of protection . 100
3.7.3. Helping in the care, support or comfort of patients . 107
3.7.4. Biomedical research 107
3.7.5. Local rules 108
3.8. POTENTIAL EXPOSURE . 108
3.8.1. Safety assessment and accident prevention . 108
3.8.2. Emergency plans . 110
3.8.3. Reporting and lessons learned . 111
3.9. QUALITY ASSURANCE 112
3.9.1. General considerations 112
3.9.2. Audit 114
CHAPTER 4. RADIONUCLIDE PRODUCTION 117
4.1. THE ORIGINS OF DIFFERENT NUCLEI . 117
4.1.1. Induced radioactivity 118
4.1.2. Nuclide chart and line of nuclear stability 120
4.1.3. Binding energy, Q-value, reaction threshold and nuclear reaction formalism . 123
4.1.4. Types of nuclear reaction, reaction channels and cross-section 124
4.2. REACTOR PRODUCTION . 127
4.2.1. Principle of operation and neutron spectrum . 128
4.2.2. Thermal and fast neutron reactions 128
4.2.3. Nuclear fission, fission products 131
4.3. ACCELERATOR PRODUCTION 132
4.3.1. Cyclotron, principle of operation,
negative and positive ions 134
4.3.2. Commercial production (low and high energy) 136
4.3.3. In-house low energy production (PET) 137
4.3.4. Targetry, optimizing the production regarding yield and impurities, yield calculations 140
4.4. RADIONUCLIDE GENERATORS . 141
4.4.1. Principles of generators 142
4.5. RADIOCHEMISTRY OF IRRADIATED TARGETS . 143
4.5.1. Carrier-free, carrier-added systems . 144
4.5.2. Separation methods, solvent extraction, ion exchange, thermal diffusion 145
4.5.3. Radiation protection considerations and hot-box facilities 147
CHAPTER 5. STATISTICS FOR RADIATION MEASUREMENT 149
5.1. SOURCES OF ERROR IN NUCLEAR MEDICINE MEASUREMENT 149
5.2. CHARACTERIZATION OF DATA . 153
5.2.1. Measures of central tendency and variability . 153
5.3. STATISTICAL MODELS 157
5.3.1. Conditions when binomial, Poisson and normal distributions are applicable . 158
5.3.2. Binomial distribution 160
5.3.3. Poisson distribution . 163
5.3.4. Normal distribution . 165
5.4. ESTIMATION OF THE PRECISION OF A SINGLE MEASUREMENT IN SAMPLE COUNTING AND IMAGING 168
5.4.1. Assumption . 168
5.4.2. The importance of the fractional σF as an indicator of the precision of a single measurement in sample counting and imaging . 170
5.4.3. Caution on the use of the estimate of the precision of a single measurement in sample counting and imaging 171
5.5. PROPAGATION OF ERROR . 172
5.5.1. Sums and differences 173
5.5.2. Multiplication and division by a constant 174
5.5.3. Products and ratios . 176
5.6. APPLICATIONS OF STATISTICAL ANALYSIS . 177
5.6.1. Multiple independent counts 177
5.6.2. Standard deviation and relative standard deviation for counting rates . 178
5.6.3. Effects of background counts . 179
5.6.4. Significance of differences between counting measurements . 183
5.6.5. Minimum detectable counts, count rate and activity 184
5.6.6. Comparing counting systems . 187
5.6.7. Estimating required counting times . 188
5.6.8. Calculating uncertainties in the measurement of plasma volume in patients 189
5.7. APPLICATION OF STATISTICAL ANALYSIS: DETECTOR PERFORMANCE 191
5.7.1. Energy resolution of scintillation detectors . 191
5.7.2. Intervals between successive events 193
5.7.3. Paralysable dead time . 194
CHAPTER 6. BASIC RADIATION DETECTORS . 196
6.1. INTRODUCTION 196
6.1.1. Radiation detectors — complexity and relevance 196
6.1.2. Interaction mechanisms, signal formation and detector type 196
6.1.3. Counting, current, integrating mode 197
6.1.4. Detector requirements . 197
6.2. GAS FILLED DETECTORS 200
6.2.1. Basic principles 200
6.3. SEMICONDUCTOR DETECTORS 202
6.3.1. Basic principles 202
6.3.2. Semiconductor detectors . 204
6.4. SCINTILLATION DETECTORS AND STORAGE PHOSPHORS 205
6.4.1. Basic principles 205
6.4.2. Light sensors 206
6.4.3. Scintillator materials 209
CHAPTER 7. ELECTRONICS RELATED TO NUCLEAR MEDICINE IMAGING DEVICES 214
7.1. INTRODUCTION 214
7.2. PRIMARY RADIATION DETECTION PROCESSES 215
7.2.1. Scintillation counters 215
7.2.2. Gas filled detection systems 216
7.2.3. Semiconductor detectors . 216
7.3. IMAGING DETECTORS 217
7.3.1. The gamma camera . 217
7.3.2. The positron camera 218
7.3.3. Multiwire proportional chamber based X ray and γ ray imagers 219
7.3.4. Semiconductor imagers 220
7.3.5. The autoradiography imager 221
7.4. SIGNAL AMPLIFICATION 222
7.4.1. Typical amplifier 222
7.4.2. Properties of amplifiers 224
7.5. SIGNAL PROCESSING . 226
7.5.1. Analogue signal utilization . 226
7.5.2. Signal digitization 226
7.5.3. Production and use of timing information 228
7.6. OTHER ELECTRONICS REQUIRED BY IMAGING SYSTEMS 230
7.6.1. Power supplies . 230
7.6.2. Uninterruptible power supplies 231
7.6.3. Oscilloscopes . 231
7.7. SUMMARY . 232
CHAPTER 8. GENERIC PERFORMANCE MEASURES . 234
8.1. INTRINSIC AND EXTRINSIC MEASURES . 234
8.1.1. Generic nuclear medicine imagers . 234
8.1.2. Intrinsic performance . 236
8.1.3. Extrinsic performance . 236
8.2. ENERGY RESOLUTION 237
8.2.1. Energy spectrum . 237
8.2.2. Intrinsic measurement — energy resolution 238
8.2.3. Impact of energy resolution on extrinsic imager performance . 239
8.3. SPATIAL RESOLUTION 240
8.3.1. Spatial resolution blurring 240
8.3.2. General measures of spatial resolution 241
8.3.3. Intrinsic measurement — spatial resolution 242
8.3.4. Extrinsic measurement — spatial resolution 242
8.4. TEMPORAL RESOLUTION . 244
8.4.1. Intrinsic measurement — temporal resolution 244
8.4.2. Dead time 244
8.4.3. Count rate performance measures 246
8.5. SENSITIVITY . 247
8.5.1. Image noise and sensitivity . 247
8.5.2. Extrinsic measure — sensitivity . 248
8.6. IMAGE QUALITY . 249
8.6.1. Image uniformity . 249
8.6.2. Resolution/noise trade-off 249
8.7. OTHER PERFORMANCE MEASURES 250
CHAPTER 9. PHYSICS IN THE RADIOPHARMACY . 251
9.1. THE MODERN RADIONUCLIDE CALIBRATOR 251
9.1.1. Construction of dose calibrators . 251
9.1.2. Calibration of dose calibrators 253
9.1.3. Uncertainty of activity measurements . 254
9.1.4. Measuring pure β emitters 258
9.1.5. Problems arising from radionuclide contaminants . 259
9.2. DOSE CALIBRATOR ACCEPTANCE TESTING AND QUALITY CONTROL . 260
9.2.1. Acceptance tests . 260
9.2.2. Quality control . 262
9.3. STANDARDS APPLYI NG TO DOSE CALIBRATORS 262
9.4. NATIONAL ACTIVITY INTERCOMPARISONS . 263
9.5. DISPENSING RADIOPHARMACEUTICALS FOR INDIVIDUAL PATIENTS 264
9.5.1. Adjusting the activity for differences in patient size and weight 264
9.5.2. Paediatric dosage charts . 264
9.5.3. Diagnostic reference levels in nuclear medicine . 266
9.6. RADIATION SAFETY IN THE RADIOPHARMACY . 269
9.6.1. Surface contamination limits 269
9.6.2. Wipe tests and daily surveys 270
9.6.3. Monitoring of staff finger doses during dispensing 270
9.7. PRODUCT CONTAINMENT ENCLOSURES 271
9.7.1. Fume cupboards . 271
9.7.2. Laminar flow cabinets . 272
9.7.3. Isolator cabinets 273
9.8. SHIELDING FOR RADIONUCLIDES . 274
9.8.1. Shielding for γ, β and positron emitters . 274
9.8.2. Transmission factors for lead and concrete . 278
9.9. DESIGNING A RADIOPHARMACY . 280
9.10. SECURITY OF THE RADIOPHARMACY 282
9.11. RECORD KEEPING 283
9.11.1. Quality control records 283
9.11.2. Records of receipt of radioactive materials . 283
9.11.3. Records of radiopharmaceutical preparation and dispensing 284
9.11.4. Radioactive waste records 284
CHAPTER 10. NON-IMAGING DETECTORS AND COUNTERS . 287
10.1. INTRODUCTION 287
10.2. OPERATING PRINCIPLES OF RADIATION DETECTORS 287
10.2.1. Ionization detectors . 288
10.2.2. Scintillation detectors . 292
10.3. RADIATION DETECTOR PERFORMANCE 294
10.3.1. Sensitivity 294
10.3.2. Energy resolution . 295
10.3.3. Count rate performance ('speed') 296
10.4. DETECTION AND COUNTING DEVICES . 298
10.4.1. Survey meters . 298
10.4.2. Dose calibrator 299
10.4.3. Well counter . 299
10.4.4. Intra-operative probes . 300
10.4.5. Organ uptake probe . 302
10.5. QUALITY CONTROL OF DETECTION AND COUNTING DEVICES . 305
10.5.1. Reference sources 305
10.5.2. Survey meter 306
10.5.3. Dose calibrator 307
10.5.4. Well counter . 310
10.5.5. Intra-operative probe 310
10.5.6. Organ uptake probe . 311
CHAPTER 11. NUCLEAR MEDICINE IMAGING DEVICES 312
11.1. INTRODUCTION 312
11.2. GAMMA CAMERA SYSTEMS . 312
11.2.1. Basic principles 312
11.2.2. The Anger camera 314
11.2.3. SPECT . 341
11.3. PET SYSTEMS 353
11.3.1. Principle of annihilation coincidence detection . 353
11.3.2. Design considerations for PET systems . 356
11.3.3. Detector systems . 362
11.3.4. Data acquisition 369
11.3.5. Data corrections 380
11.4. SPECT/CT AND PET/CT SYSTEMS . 392
11.4.1. CT uses in emission tomography 392
11.4.2. SPECT/CT 393
11.4.3. PET/CT 394
CHAPTER 12. COMPUTERS IN NUCLEAR MEDICINE 398
12.1. PHENOMENAL INCREASE IN COMPUTING CAPABILITIES 398
12.1.1. Moore's law . 398
12.1.2. Hardware versus 'peopleware' 398
12.1.3. Future trends 399
12.2. STORING IMAGES ON A COMPUTER 400
12.2.1. Number systems . 400
12.2.2. Data representation . 401
12.2.3. Images and volumes 403
12.3. IMAGE PROCESSING 405
12.3.1. Spatial frequencies . 406
12.3.2. Sampling requirements 412
12.3.3. Convolution . 412
12.3.4. Filtering 414
12.3.5. Band-pass filters . 416
12.3.6. Deconvolution . 421
12.3.7. Image restoration filters 422
12.3.8. Other processing . 424
12.4. DATA ACQUISITION 425
12.4.1. Acquisition matrix size and spatial resolution 426
12.4.2. Static and dynamic planar acquisition . 426
12.4.3. SPECT . 427
12.4.4. PET acquisition 428
12.4.5. Gated acquisition . 430
12.4.6. List-mode . 431
12.5. FILE FORMAT 431
12.5.1. File format design 432
12.5.2. Common image file formats 435
12.5.3. Movie formats . 437
12.5.4. Nuclear medicine data requirements 437
12.5.5. Common nuclear medicine data storage formats 442
12.6. INFORMATION SYSTEM . 443
12.6.1. Database . 443
12.6.2. Hospital information system 445
12.6.3. Radiology information system 445
12.6.4. Picture archiving and communication system . 446
12.6.5. Scheduling 447
12.6.6. Broker . 447
12.6.7. Security 447
CHAPTER 13. IMAGE RECONSTRUCTION . 449
13.1. INTRODUCTION 449
13.2. ANALY TICAL RECONSTRUCTION 450
13.2.1. Two dimensional tomography . 451
13.2.2. Frequency–distance relation 456
13.2.3. Fully 3‑D tomography . 457
13.2.4. Time of flight PET 466
13.3. ITERATIVE RECONSTRUCTION . 468
13.3.1. Introduction . 468
13.3.2. Optimization algorithms . 473
13.3.3. Maximum-likelihood expectation-maximization 479
13.3.4. Acceleration . 485
13.3.5. Regularization . 488
13.3.6. Corrections . 495
13.4. NOISE ESTIMATION . 507
13.4.1. Noise propagation in filtered back projection . 507
13.4.2. Noise propagation in maximum-likelihood expectation-maximization 508
CHAPTER 14. NUCLEAR MEDICINE IMAGE DISPLAY . 512
14.1. INTRODUCTION 512
14.2. DIGITAL IMAGE DISPLAY AND VISUAL PERCEPTION . 513
14.2.1. Display resolution 514
14.2.2. Contrast resolution . 515
14.3. DISPLAY DEVICE HARDWARE . 516
14.3.1. Display controller 516
14.3.2. Cathode ray tube . 517
14.3.3. Liquid crystal display panel 519
14.3.4. Hard copy devices . 521
14.4. GREY SCALE DISPLAY 521
14.4.1. Grey scale standard display function 522
14.5. COLOUR DISPLAY 525
14.5.1. Colour and colour gamut . 528
14.6. IMAGE DISPLAY MANIPULATION 530
14.6.1. Histograms 530
14.6.2. Windowing and thresholding 530
14.6.3. Histogram equalization 532
14.7. VISUALIZATION OF VOLUME DATA 533
14.7.1. Slice mode 533
14.7.2. Volume mode 534
14.7.3. Polar plots of myocardial perfusion imaging . 538
14.8. DUAL MODALITY DISPLAY 540
14.9. DISPLAY MONITOR QUALITY ASSURANCE 541
14.9.1. Acceptance testing 542
14.9.2. Routine quality control 542
CHAPTER 15. DEVICES FOR EVALUATING IMAGING SYSTEMS 547
15.1. DEVELOPING A QUALITY MANAGEMENT SYSTEM APPROACH TO INSTRUMENT QUALITY ASSURANCE . 547
15.1.1. Methods for routine quality assurance procedures . 547
15.2. HARDWARE (PHYSICAL) PHANTOMS . 550
15.2.1. Gamma camera phantoms 550
15.2.2. SPECT phantoms . 558
15.2.3. PET phantoms . 568
15.3. COMPUTATIONAL MODELS 575
15.3.1. Emission tomography simulation toolkits 577
15.4. ACCEPTANCE TESTING . 578
15.4.1. Introduction . 578
15.4.2. Procurement and pre-purchase evaluations . 580
15.4.3. Acceptance testing as a baseline for regular quality assurance . 583
15.4.4. What to do if the instrument fails acceptance testing . 584
15.4.5. Meeting the manufacturer's specifications . 584
CHAPTER 16. FUNCTIONAL MEASUREMENTS IN NUCLEAR MEDICINE . 587
16.1. INTRODUCTION 587
16.2. NON-IMAGING MEASUREMENTS . 588
16.2.1. Renal function measurements . 588
16.2.2. 14C breath tests 591
16.3. IMAGING MEASUREMENTS 591
16.3.1. Thyroid 592
16.3.2. Renal function 594
16.3.3. Lung function . 596
16.3.4. Gastric function . 596
16.3.5. Cardiac function . 599
CHAPTER 17. QUANTITATIVE NUCLEAR MEDICINE 608
17.1. PLANAR WHOLE BODY BIODISTRIBUTION
MEASUREMENTS . 608
17.2. QUANTITATION IN EMISSION TOMOGRAPHY . 609
17.2.1. Region of interest 609
17.2.2. Use of standard 610
17.2.3. Partial volume effect and the recovery coefficient . 610
17.2.4. Quantitative assessment . 612
17.2.5. Estimation of activity . 616
17.2.6. Evaluation of image quality 618
CHAPTER 18. INTERNAL DOSIMETRY . 621
18.1. THE MEDICAL INTERNAL RADIATION DOSE FORMALISM . 621
18.1.1. Basic concepts . 621
18.1.2. The time-integrated activity in the source region 626
18.1.3. Absorbed dose rate per unit activity (S value) 628
18.1.4. Strengths and limitations inherent in the formalism 631
18.2. INTERNAL DOSIMETRY IN CLINICAL PRACTICE . 635
18.2.1. Introduction . 635
18.2.2. Dosimetry on an organ level 636
18.2.3. Dosimetry on a voxel level . 637
CHAPTER 19. RADIONUCLIDE THERAPY 641
19.1. INTRODUCTION 641
19.2. THYROID THERAPIES . 642
19.2.1. Benign thyroid disease 642
19.2.2. Thyroid cancer . 643
19.3. PALLIATION OF BONE PAIN 645
19.3.1. Treatment specific issues . 646
19.4. HEPATIC CANCER . 646
19.4.1. Treatment specific issues . 647
19.5. NEUROENDOCRINE TUMOURS . 647
19.5.1. Treatment specific issues . 648
19.6. NON-HODGKIN'S LY MPHOMA . 649
19.6.1. Treatment specific issues . 649
19.7. PAEDIATRIC MALIGNANCIES 650
19.7.1. Thyroid cancer . 651
19.7.2. Neuroblastoma . 651
19.8. ROLE OF THE PHYSICIST 652
19.9. EMERGING TECHNOLOGY . 654
19.10. CONCLUSIONS . 656
CHAPTER 20. MANAGEMENT OF THERAPY PATIENTS 658
20.1. INTRODUCTION 658
20.2. OCCUPATIONAL EXPOSURE . 658
20.2.1. Protective equipment and tools . 658
20.2.2. Individual monitoring . 659
20.3. RELEASE OF THE PATIENT . 659
20.3.1. The decision to release the patient . 660
20.3.2. Specific instructions for releasing the radioactive patient . 662
20.4. PUBLIC EXPOSURE . 665
20.4.1. Visitors to patients 665
20.4.2. Radioactive waste 665
20.5. RADIONUCLIDE THERAPY TREATMENT ROOMS AND WARDS . 666
20.5.1. Shielding for control of external dose . 666
20.5.2. Designing for control of contamination . 668
20.6. OPERATING PROCEDURES . 668
20.6.1. Transport of therapy doses . 669
20.6.2. Administration of therapeutic radiopharmaceuticals . 669
20.6.3. Error prevention . 670
20.6.4. Exposure rates and postings 670
20.6.5. Patient care in the treating facility 672
20.6.6. Contamination control procedures . 673
20.7. CHANGES IN MEDICAL STATUS 674
20.7.1. Emergency medical procedures 675
20.7.2. The radioactive patient in the operating theatre . 675
20.7.3. Radioactive patients on dialysis . 676
20.7.4. Re-admission of patients to the treating institution . 676
20.7.5. Transfer to another health care facility 677
20.8. DEATH OF THE PATIENT . 677
20.8.1. Death of the patient following radionuclide therapy 678
20.8.2. Organ donation 679
20.8.3. Precautions during autopsy . 679
20.8.4. Preparation for burial and visitation 680
20.8.5. Cremation 681
APPENDIX I: ARTEFAC TS AND TROUBLESHOOTING 684
APPENDIX II: RADIONUCLIDES OF INTEREST IN DIAGNOSTIC AND THERAPEUTIC NUCLEAR MEDICINE . 719
ABBREVIATIONS 723
SYMBOLS 729
CONTRIBUTORS to drafting and review 735
 
Copyright © -2012 nuclear medicine book All Rights Reserved | Template Design by Favorite Blogger Templates | Blogger Tips and Tricks